
3. Quantisation as an eigenvalue problem;
by E. Schrödinger∗

(first communication.)

——————

§ 1. In this communication I would like first to show, in the simplest case of the
(non-relativistic and unperturbed) hydrogen atom, that the usual prescription for
quantisation can be substituted by another requirement in which no word about
“integer numbers” occurs anymore. Rather, the integerness1 emerges in the same
natural way as, for example, the integerness of the number of knots of a vibrating
string. The new interpretation is generalisable and touches, as I believe, very
deeply the true essence of the quantisation prescription.

The usual form of the latter is tied to the Hamiltonian partial differential equa-
tion:

(1) H

(
q,
∂S

∂q

)
= E .

It is looked for a solution of this equation that appears as a sum of functions, each
of only one of the independent variables q.

We introduce now in place of S a new, unknown function ψ in such a manner
that ψ would appear as a product of suitable functions of the single coordinates.
That is, we set:

(2) S = K lgψ .

The constant K must be introduced for dimensional reasons and it has the dimen-
sion of an action. With this one obtains:

(1′) H

(
q,
K

ψ

∂ψ

∂q

)
= E .

We do not look now for a solution of equation (1′), but we stipulate the following re-
quirement. Neglecting the variability of the masses, or considering it at least as long
as the single electron problem is concerned, equation (1′) can always be brought
to the form: a quadratic form for ψ and its first derivatives = 0. We look for such

∗Original title: Quantisierung als Eigenwertproblem. Published in: Annalen der Physik 79
(1926): 361-376. Translated by Oliver F. Piattella. E-mail: oliver.piattella@cosmo-ufes.org

1Translator’s note: I have translated here Ganzzahligkeit as “integerness”, meaning ”the
property of a number being integer”.
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real, single-valued in the whole configuration space, finite and twice continuously
differentiable functions ψ, which make to an extremum the integral, extended over
the whole configuration space, of the just mentioned quadratic form2). With this
variation problem we substitute the quantum conditions.

First of all, we will take for H the Hamiltonian function of the Keplerian motion
and show that the established requirement is satisfiable for all positive, but only
for a discrete set of negative, values of E. That is, the mentioned variation problem
has a discrete and a continuous spectrum of eigenvalues. The discrete spectrum
corresponds to the Balmer terms, whereas the continuous one corresponds to the
energies of the hyperbolic orbits. In order for numerical agreement to exist, K
must get the value h/2π.

Since for the arrangement of the variation equations the choice of coordinates
is of no importance, we choose the right-angled Cartesian ones. Then, in our case,
(1′) reads (e, m are the electron charge and mass):

(1′′)

(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+

(
∂ψ

∂z

)2

− 2m

K2

(
E +

e2

r

)
ψ2 = 0 .

r =
√
x2 + y2 + z2 .

And our variation problem reads:

δJ = δ

∫ ∫ ∫
dxdydz

[(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+

(
∂ψ

∂z

)2

(3)

−2m

K2

(
E +

e2

r

)
ψ2

]
= 0 ,

with the integral extended over the whole space. One finds from this, in the usual
way:

(4)
1

2
δJ =

∫
dfδψ

∂ψ

∂n
−
∫ ∫ ∫

dxdydzδψ

[
∆ψ +

2m

K2

(
E +

e2

r

)
ψ

]
= 0 .

It must then be, firstly, that

(5) ∆ψ +
2m

K2

(
E +

e2

r

)
ψ = 0 ,

and, secondly, the integral to be extended over the infinitely far closed surface must
be

(6)

∫
dfδψ

∂ψ

∂n
= 0 .

(It will turn out that because of the latter requirement we have to supplement our
variation problem with still a requirement over the behaviour of δψ at infinity, so
that also the above claimed continuous spectrum actually exists. But, later about
that.)

2It doesn’t escape to me that this formulation is not completely unambiguous.
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The solution of (5) can be worked out (for example) in spatial polar coordinates
r, ϑ, ϕ, by setting ψ as a product of a function of r, a function of ϑ and a function
of ϕ. The method is abundantly known. For the dependence on the polar angles
it comes out a spherical harmonic,3 whereas for the dependence on r — we want
to call χ its function — one easily obtains the differential equation:

(7)
d2χ

dr2
+

2

r

dχ

dr
+

(
2mE

K2
+

2me2

K2r
− n(n+ 1)

r2

)
χ = 0 .

n = 0, 1, 2, . . . .

The restriction of n to integer numbers is notoriously necessary, so that the depen-
dence on the polar angles becomes single-valued. — We need solutions of (7) that
remain finite for all real, non-negative values of r. Now, equation (7) has4 in the
complex r-plane two singularities, at r = 0 and at r = ∞, of which the second is
an “irregular singular point”5 (an essential singularity)6 of all integrals,7 whereas
the first is not (for no integral). Both these singularities are forming the boundary
points of our real interval. Now, in such case one knows that the requirement
of finiteness for the function χ at the boundary points amounts to a boundary
condition. The equation has in general no integral at all which at both boundary
points stays finite, but such an integral exists only for certain specific values of the
constants which appear in the equation. It is necessary to determine these specific
values.

The fact just pointed out is the salient point in the whole investigation.
We consider first the singular point r = 0. The so-called characteristic equa-

tion,8 which determines the behaviour of the integral at this point, is:9

(8) %(%− 1) + 2%− n(n+ 1) = 0

with the roots:

(8′) %1 = n , %2 = −(n+ 1) .

3Translator’s note: in German, Kugelflächenfunktion. Literally, “spherical surface func-
tion”.

4For the guide to the treatment of equation (7) I am obliged to the greatest gratitude to
Hermann Weyl. For the claims which will not be proved in the following, I refer to L. Schlesinger,
Differential equations (Collection Schubert Nr. 13, Göschen, 1900, especially chapters 3 and 5).

5Translator’s note: in German, Stelle der Unbestimmtheit. Literally “location of the indef-
initeness”.

6Translator’s note: in German, wesentlich singuläre Stelle. Literally, “essential singular
location”

7Translator’s note: “integral”, here and in the following, stands for “solution of the differ-
ential equation” (which, in fact, is an integral).

8Translator’s note: also known as “indicial equation”. In German, determinierende Funda-
mentalgleichung, literally “fundamental determining equation”.

9Translator’s note: in order to find equation (8) one postulates a power series:

χ(r) = r%
∞∑
k=0

ckr
k ,

with c0 6= 0, and substitutes it into equation (7). The coefficient of the lowest power of r is the
characteristic equation. This is generally known as the Frobenius method.
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The two canonical integrals at this point go then with exponents n and −(n+ 1).
Since n is non-negative, only the former integral is useful for us. Since this goes
with the larger exponent, it is represented by a usual power series that starts with
rn. (The other integral, which does not interest us, can contain a logarithm, due
to the integer difference between the exponents.) Since the next singular point lies
only at infinity, the mentioned power series converges continuously10 and represents
an entire transcendental function.11 We thus establish:

The solution we looked for is (a part from an irrelevant constant factor) a
single-valued, specific transcendental function, which at r = 0 goes with exponent
n.

Now, the question is to investigate the behaviour of this function at the infinity
of the positive real axis. To this purpose, we simplify equation (7) by means of the
substitution

(9) χ = rαU ,

in which α is chosen so that the term with 1/r2 cancels out. To this purpose, α
must get one of the two values n, −(n + 1), as one easily verifies. Equation (7)
takes then the form

(7′)
d2U

dr2
+

2(α + 1)

r

dU

dr
+

2m

K2

(
E +

e2

r

)
U = 0 .

Its integrals go at r = 0 with exponents 0 and −2α − 1.12 For the first value of
α, α = n, is the first, for the second value of α, α = −(n + 1), is the second of
these integrals an entire transcendental function and leads via (9) to the sought
after solution, which is certainly single-valued. Therefore, we lose nothing if we
limit ourselves to one of the two values of α. We choose

(10) α = n .

Our solution U goes then at r = 0 with exponent 0. The mathematicians call
equation (7′) a Laplace equation. The general type is

(7′′)
d2U

dr2
+

(
δ0 +

δ1
r

)
dU

dr
+
(
ε0 +

ε1
r

)
U = 0 .

In our case, the constants have the values

(11) δ0 = 0 , δ1 = 2(α + 1) , ε0 =
2mE

K2
, ε1 =

2me2

K2
.

This type of equation is relatively easy to handle for the reason that the so-called
Laplace transform, which in general results again in an equation of second order,
leads here to the first order, which is solvable through quadrature. This allows

10Translator’s note: in German, beständig konvergieren.
11Translator’s note: the function is “entire” because it has no singularities, except that at

infinity, and it is “transcendental” because it is not a polynomial.
12Translator’s note: In order to see this, one calculates again the characteristic equation.
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for a representation of the solution of (7′′) even through integrals in the complex
plane. I quote here the final result only.13) The integral14

(12) U =

∫
L

ezr(z − c1)α1−1(z − c2)α2−1dz

is a solution of (7′′) for an integration path L for which

(13)

∫
L

d

dz
[ezr(z − c1)α1(z − c2)α2 ] dz = 0 .

The constants c1, c2, α1, α2 have the following values. c1 and c2 are the roots of
the quadratic equation:

(14) z2 + δ0z + ε0 = 0

and

(14′) α1 =
ε1 + δ1c1
c1 − c2

, α2 =
ε1 + δ1c2
c2 − c1

.

In the case of equation (7′), one has then, according to (11) and (10)

(14′′)


c1 = +

√
−2mE

K2
, c2 = −

√
−2mE

K2
;

α1 =
me2

K
√
−2mE

+

+ n+ 1 , α2 = − me2

K
√
−2mE

+

+ n+ 1 .

The integral representation (12) allows not only to oversee the asymptotic be-
haviour of the general solution15 when r goes to infinity in a certain way, but also
to give this behaviour for a specific solution, which is always much harder.

We want now, first of all, to exclude the case in which α1 and α2 are real,
integer numbers. When this happens, it happens always at the same time for both
the two quantities and indeed in the case, and only in the case, when

(15)
me2

K
√
−2mE

+

= real integer number .

Therefore, we suppose that (15) is not satisfied.
The behaviour of the general solution for r going to infinity in a certain manner

- we want always think of r going to the real, positive infinite - is thereupon16)
characterised by the behaviour of the two linearly independent solutions which are
obtained via the following two specifications of the integration path L and that we

13cf. L. Schlesinger, loc. cit. One owes the theory to H. Poincaré and J. Horn.
14Translator’s note: I put in the appendix the derivation of equation (12).
15Translator’s note: I have employed the terminology “general solution” for the translation

of the German Gesamtheit von Lösungen, which literally translates as “totality of the solutions”.
16When (15) is satisfied, at least one of the two integration paths described in the text becomes

unusable, since it delivers a vanishing result.
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want to dub U1 and U2. Let, for both instances, z come from infinity and go back
there on the same path, and indeed in a direction such that

(16) lim
z=∞

ezr = 0 ,

i.e. the real part of zr should become negative infinite. Hereby condition (13) is
satisfied. In between, let in one case (solution U1) the point c1, whereas in the
other case (solution U2) the point c2, be circulated, each once.

These two solutions are now asymptotically (in the sense of Poincaré) repre-
sented, for very large real positive values of r, by

(17)

{
U1 ∼ ec1rr−α1(−1)α1 (e2πiα1 − 1) Γ(α1)(c1 − c2)α2−1 ,
U2 ∼ ec2rr−α2(−1)α2 (e2πiα2 − 1) Γ(α2)(c2 − c1)α1−1 ,

where we content ourselves here with the first term of the asymptotic series, which
goes on with negative integer powers of r.

We have now to distinguish the two cases E ≷ 0.
Let it first be
1. E > 0. We note first that hereby the non-satisfaction of (15) is guaranteed

by the very fact that this quantity is purely imaginary. Further, according to
(14′′) also c1 and c2 becomes purely imaginary. The exponential functions in (17)
are then, since r is real, finite periodic functions. The values of α1 and α2 show,
according to (14′′), that U1 and U2 both go to zero as r−n−1. The same must hold
true also for our entire transcendent solution U , whose behaviour we look for, as
it can always be built as a linear combination of U1 and U2. Further, (9) shows,
considering (10), that the function χ, i.e. the entire transcendent solution of the
originally existing equation (7), still goes to zero as 1/r, since it emerges from U
via multiplication with rn. We can therefore claim:

The Eulerian differential equation (5) of our variational problem has for each
positive E solutions which in the whole space are single-valued, finite and continu-
ous and go to zero at infinity as 1/r with steady oscillations. - It will have to be
discussed yet about the surface condition (6).

2. E < 0. In this case the condition (15) is not eo ipso excluded, but for the
moment we hold onto its exclusion, as arranged. Then, according to (14′′) and
(17), U1 grows unlimited for r =∞, whereas U2 vanishes exponentially. Our entire
transcendent U (and the same holds true for χ) will then remain finite if and only
if U is identical to U2, a part from a numerical factor. However, this is not the
case. One realises this so: choosing in (12) for the integration contour L a closed
circuit about both the points c1 and c2 (due to the integerness of the sum α1 + α2

such contour is then really closed on the Riemann surface of the integrand), upon
fulfillment of the very condition (13), one can easily show that the integral (12)
represents then our entire transcendent U . Namely, it can be developed in a series
of positive powers of r, which always converges for sufficiently small values of r,
hence it satisfies the differential equation (7′), and thus the power series must
coincide with that for U . So: U is represented by (12) when L is a closed contour
about both the points c1 and c2. However, this closed contour can be distorted
so that it appears as the combination of the two previously considered integration

6



paths, those related to U1 and U2, and indeed without vanishing factors, say 1 and
e2πiα1 . QED17

Then, our entire transcendent U , which is the only possible solution of the
variation problem among the solutions of (7′), does not stay finite for large r, under
the prescriptions made. — Under reserve of the investigation of the completeness,
that is of the proof that our procedure allows to find all the linearly independent
solutions, we can then claim:

For those negative values of E which do not satisfy condition (15), our variation
problem has no solution.

We have now to investigate only that discrete set of negative values of E which
do satisfy condition (15). α1 and α2 are then both integer. Of the two integration
paths which have earlier delivered to us the fundamental system U1, U2, the first
must certainly be modified in order to yield something non-vanishing. Since α1−1
is certainly positive, the point c1 is then now neither a branch point nor a pole of
the integrand, but an ordinary zero. The point c2 can also become regular, if indeed
also α2 − 1 is non-negative. In any case, however, two suitable integration paths
can be easily provided and the integration along them can be even carried out in
a closed form, through known functions, so that the behaviour of the solutions is
completely controlled.

Let namely

(15′)
me2

K
√
−2mE

= l ; l = 1, 2, 3, 4 . . . .

Then, according to (14′′)

(14′′′) α1 − 1 = l + n , α2 − 1 = −l + n .

One has now to distinguish the two cases l ≤ n and l > n. To begin with, let
a) l ≤ n. Then c2 and c1 lose any singular character, but gain the suitability to

serve as initial or endpoints of the integration path, in order to satisfy condition
(13). A third point suitable for this is the the negative real infinite. Any path
between two of these three points delivers a solution and of these three solutions
two by two are linearly independent, as one easily verifies by calculating the integral
in closed form. In particular, the entire transcendent solution is delivered through
the integration path from c1 to c2. Then, one recognises, without calculating it,
that this integral stays regular for r = 0. I stress this because the actual calculation
is rather likely to conceal this fact. On the other hand, it shows that the integral
grows beyond any limit for positive infinitely large r. For large r, one of the other
two integrals remains finite, but in turn it becomes infinite for r = 0.

So, we get in the case l ≤ n no solution to the problem.
b) l > n. Then, according to (14′′), c1 is a zero and c2 is a pole of at least

first order of the integrand. Two independent integrals are then delivered: one via
the path that from z = −∞ leads to the zero, taking care of avoiding the pole;
the other by the residual of the pole. The latter is the entire transcendent. We
want to give its calculated value, but at once multiplied by rn, so that we obtain,

17Translator’s note: in German, w.z.b.w.: Was zu beweisen war, i.e. “which was to demon-
strate”.
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according to (9) and (10) the solution of the originally presented equation (7).
(The irrelevant multiplicative constant is arbitrarily adjusted.) One finds:

(18) χ = f

(
r

√
−2mE

K

)
, f(x) = xne−x

l−n−1∑
k=0

(−2x)k

k!

(
l + n

l − n− 1− k

)
.

One recognises that this is really a usable solution, since it remains finite for all
real, non-negative r. Furthermore, the surface condition (6) is guaranteed by its
exponential vanishing. We summarise the results for negative E:

For negative E, our variation problem has solutions in the case, and only in
the case, in which E satisfies condition (15). To the integer number n, which gives
the order of the spherical harmonic appearing in the solution, can be then always
assigned only values smaller than l (of which there is at least one always available).
The part of the solution dependent on r is given by (18).18

By counting out the constants in the spherical harmonics (2n + 1, as is well
known) one finds further:

The solution found contains, for an admissible combination (n, l), exactly 2n+1
arbitrary constants; for a given value of l then l2 constants.19

We have thus proved in the main traits the claims established at the beginning,
about the spectrum of the eigenvalues of our variation problem, although there are
still gaps.

In the first place, the completeness of the whole established system of eigenfunc-
tions. I do not want to deal with that in this note. According to other experiences
one can suspect that no eigenvalues have escaped to us.

In the second place, it is to be remembered that the eigenfunctions established
for positive E do not readily solve the variation problem in the form in which
it was posed at the beginning, because at infinity they go to zero only as 1/r,
thus ∂ψ/∂r on a large sphere goes only as 1/r2 to zero. The surface integral (6)
remains then just of the order of δψ at infinity. If one really wishes to obtain also
the continuous spectrum, one must then add one extra condition to the problem:
for example that δψ vanishes at infinity, or at least that it should tend to a constant
value independent from the direction along which one goes to spatial infinity; in
the latter case the spherical harmonics make the surface integral to vanish.
§ 2. Condition (15) gives

(19) −El =
me4

2K2l2
.

Therefore, the well-known Bohr energy levels, which correspond to the Balmer
terms, arise when one assign to the constant K, which we had to introduce in (2)
for dimensional reasons, the value

(20) K =
h

2π
.

18Translator’s note: Note that in the nowadays textbooks one usually sees n ↔ l, i.e. l is
the order of the spherical harmonic and n denotes the energy levels.

19Translator’s note: Because
∑l−1

n=0(2n+ 1) = l2.
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Then one has of course

(19′) −El =
2π2me4

h2l2
.

Our l is the principal quantum number. n+1 has analogy with the azimuthal quan-
tum number, the further division of this number in the definition of the spherical
harmonics can be put into analogy with the division of the azimuthal quantum
in a “equatorial” quantum and in a “polar” quantum. These numbers determine
here the system of nodal lines on the sphere. Also the “radial quantum number,”
l − n − 1 determines exactly the number of “nodal spheres”, since one can easily
convince themselves that the function f(x) in (18) has exactly l−n−1 real positive
roots. — The positive values of E correspond to the continuum of the hyperbolic
trajectories, to which one can attribute, in a certain sense, the radial quantum
number ∞. To this corresponds, as we have seen, that the related solutions go to
infinity with steady oscillations.

It also of interest that the region inside which the functions (18) are considerably
different from zero and inside which they display their oscillations is anyway of the
general order of magnitude of the great axis of the assigned ellipse. The factor,
multiplied with which the radius vector appears as argument of the constant-free
function f , is — obviously — the reciprocal of a length, and this length is

(21)
K√
−2mE

=
K2l

me2
=

h2l

4π2me2
=
al
l
,

where al is the semi-major axis of the l-th elliptical trajectory. (The equations

follow from (19) together with the known relation El = − e2

2a2l
).

The quantity (21) gives the order of magnitude of the region of the roots for
small l and n; then it can be deduced that the roots of f(x) are of order of
magnitude one. This is naturally not the case if the coefficients of the polynomial
are large numbers. I would like not to address now the more precise estimate of
the roots, but I believe that through that the above claim will prove itself quite
correct.
§ 3. It is natural to relate the function ψ to a vibration process occurring

in the atom, which is more realistic than the today very often doubted electron
trajectories. Originally, I also had the aim of motivating the new interpretation of
the quantum prescription in this more expressive way, but then I have preferred the
above neutral mathematical form because it allows to bring more clearly to light
the essential. As the essential it seems to me that it does not come out anymore
the secret “requirement of integerness”, but this is, so to say, traced one step back:
it has its basis in the finiteness and single-valuedness of a certain function of space.

I would also like now not yet to go closer this discussion of the possibilities
interpretations of this vibration process, before some somehow more complicated
cases are worked out with success in the new interpretation. It is not settled that
the latter in its results will be a mere reproduction of the usual quantum theory.
For example, the relativistic Kepler problem, if one goes through the calculation
exactly according to the prescription given at the beginning, leads strangely to
half-integer quantum numbers (radial and azimuthal quanta).
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Nevertheless, let some more remarks about the idea of the vibration be allowed
here. First of all, I would like not to leave unmentioned, that I owe the stimula-
tion to these reflections in the first place to the brilliant thesis of Mr. Louis de
Broglie20) and to the thought about the spatial distribution of those “phasewave”,
for which he has shown that always an integer number of them, measured along
the trajectory, are allotted to each period or quasiperiod of the electron. The main
difference is that de Broglie thinks of propagating waves, whereas we, if we put
underneath our formulae the idea of vibration, are lead to standing proper oscil-
lations. I have shown recently21 that one can motivate Einstein’s theory of gas by
considering such standing proper oscillations, for which one applies the dispersion
law of the de Broglie phasewave. The above considerations for the atom could have
been represented as a generalisation of those thoughts on the model of gas.

If one interprets the individual functions (18), multiplied with a spherical har-
monic of order n, as the description of processes of proper oscillations, then the
quantity E must have something to do with the frequency of the process in ques-
tion. Now, one is used to the fact that in oscillatory problems the “parameter”
(usually called λ) is proportional to the square of the frequency. But, first, such an
approach would lead in the present case, just for negative values of E, to imaginary
frequencies, second their instinct tells to the quantum theorist, that the energy has
to be proportional to the frequency itself and not to its square.

The contradiction resolves itself in the following way. For the “parameter” E
of the variation equation (5) there is of course no natural fundamental level estab-
lished, especially since the unknown function ψ appears multiplied, a part from
E, also by a function of r which, upon a corresponding change in the fundamental
level of E, can be altered by a constant. Consequently, the “expectation of the
theoretician of the oscillations” must be corrected to the extent that not E itself
— we called it so up to now and want to call it so also in the following — but
E increased by a certain constant is expected to be proportional to the square of
the frequency. Let now this constant be very large with respect to the modules
of all occurring negative values of the energy [which are, of course, constrained
by (15)]. Then, first, the frequencies become real, but, second, our values of the
energy become, since they correspond only to relatively small differences in the
frequencies, really very closely proportional to these differences in the frequency.
On the other hand, this is all the “natural instinct” of the quantum theorist can
demand, as long as the zero level of the energy is not established.

The interpretation that the frequency of the oscillatory process is given by
something of the sort

(22) ν = C ′
√
C + E = C ′

√
C +

C ′

2
√
C
E + . . .

where C is a constant very large with respect to all the energies, has however an-
other very estimable superiority. It provides an understanding for Bohr’s condition
on the frequency. According to the latter the emission frequencies are indeed pro-
portional to the energy differences, then according to (22) also to the differences

20L. de Broglie, Ann. de Physique (10) 3. S. 22. 1925 (Thèses, Paris 1924)
21Published recently in the Physik. Zeitschr.
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of the proper frequencies ν of that hypothetical vibration process. And indeed
when the proper frequencies are all very large with respect to the emission fre-
quencies, they match among themselves closely. The emission frequencies appear
thus as deep “difference tones” of the proper oscillations themselves, which take
place with much higher frequency. That by the shift of the energy from one into an-
other normal oscillation something — I mean the lightwave — appears, to which as
frequency is attributed the frequency difference, is very understandable; one needs
only to imagine that the lightwave is causally linked with the beat that necessarily
occur during the transition at every point of space and the frequency of the light
is determined by the frequency with which the maximum of the intensity of the
beat process recurs per second.

It might raise concerns that these conclusions are based on the relation (22)
in its approximated form (upon development of the square root) by which Bohr’s
condition on the frequency itself acquires apparently the character of an approx-
imated formula. However, that is only apparent and is completely avoided when
one develops the relativistic theory by which in the first place a deeper under-
standing is conveyed. The large additive constant C is obviously most intimately
connected with the rest energy mc2 of the electron. Also the apparently reiterated
and independent appearance of the constant h (which already was introduced in
(20)) in the frequency condition is by the relativistic theory clarified, or better,
avoided. But, unfortunately, its complete development encounters at the moment
still certain, above touched, difficulties.

It is barely necessary to emphasise how much nicer would be the idea that in
a quantum transition the energy shifts from one form of oscillation to another,
than the idea of jumping electrons. The variation of the oscillatory form can
constantly realise itself in space and time, according to the experience (canal rays
attempts of W. Wien) it can well last as long as the emission process lasts: and
nevertheless the proper frequencies will be determined, and together with them at
once the oscillatory frequency, if during this transition the atom is subject to an
electromagnetic field for a relatively short time, and only as long as the field is
acting. This experimentally established fact causes, as it is well-known, up to now
the biggest difficulties to the comprehension, cf. for example the discussion in the
known attempt of solution of Bohr-Kramers-Slater.

Further one cannot certainly forget in the joy over the human proximity of
all these things, that the idea that the atom vibrates, if it does not irradiate,
specifically in the form of one proper oscillation, I say that this idea, if it must be
retained, departs itself still very strongly from the natural picture of an oscillating
system. Indeed, as it is well known, a macroscopic system does not certainly
behave itself in such a way, but it delivers in general a potpourri of its proper
frequencies. One cannot however establish rash their opinion about this point.
Also a potpourri of proper frequencies for a single atom would make no difference,
as long as at the same time no other beat frequencies appear as those to whose
emission the atom is fit, according to the experience, under conditions. Also the
simultaneous genuine emission of many of these spectral lines by the same atom
does not contradict any experience. One could well think then that the atom
oscillates only in normal conditions (and approximately in certain “metastable”
conditions) with one frequency and right because of this it does not emit, because,
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that is to say, no beats occur.
The stimulation would consist in a simultaneous state of excitation of one or

more other proper frequencies through which then beats arise, that call for the
light emission.

Under all circumstances I would like to believe that the eigenfunctions belonging
to the same frequency are in general all excited simultaneously. Multiplicity of
the eigenvalues corresponds namely, in the language of the present day theory,
to the degeneracy. To the reduction of the quantisation of degenerate systems
might correspond the arbitrary distribution of the energy over the eigenfunctions
belonging to one eigenvalue.

————————

Addition by the proofreading on 28. II. 1926.

For the case of the conservative systems of classical mechanics the variation
task can be formulated in a way nicer than that at the beginning, without explicit
relation to the Hamiltonian partial differential equation, as follows. Let T (q, p)
be the kinetic energy as function of the coordinates and of the momenta, V the
potential energy, dτ the volume element of the configuration space “rationalised”,
that is not simply the product dq1, dq2 . . . dqn, but it divided by the square root of
the discriminant of the quadratic form T (q, p). (cf. Gibbs, Statistical Mechanics.)
Then ψ should make the “Hamiltonian integral”

(23)

∫
dτ

{
K2T

(
q,
∂ψ

∂q

)
+ ψ2V

}
stationary under the normalising additional condition

(24)

∫
ψ2dτ = 1 .

The eigenvalues of this variation problem are, as it is well known, the stationary
values of the integral (23) and deliver, according to our thesis, the energy quantum
levels.

Regarding (14′′) let it be still remarked that in the quantity α2 one has es-
sentially before themselves the known Sommerfeld’s expression − B√

A
+
√
C (cf.

“Atombau”, 4. Aufl., S. 775).

Zürich, Physics Institute of the University

(submitted on January 27, 1926)

Printed by Metzger & Wittig in Leipzig
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Translator’s appendix

Applying Laplace transform to equation (7′′)

Recall equation (7′′):

(7′′)
d2U

dr2
+

(
δ0 +

δ1
r

)
dU

dr
+
(
ε0 +

ε1
r

)
U = 0 .

Let us represent U(r) as follows:

(25) U(r) =

∫
L

dzezrF (z) ,

where L is a suitable integration path on the complex plane of the complex variable
z. Plugging this representation into equation (7′′) one obtains:

(26)

∫
L

dzezr[P (z) +Q(z)r]F (z) = 0 ,

with

(27) P (z) = δ1z + ε1 , Q(z) = z2 + δ0z + ε0 .

Write:

(28) r =
d

dz
erz ,

and recast the transformed equation (26) as:
(29)∫

L

dz
d

dz
[ezrQ(z)F (z)]−

∫
L

dzezr [−P (z)F (z) +Q(z)F ′(z) +Q′(z)F (z)] = 0 ,

where the prime denotes derivation with respect to z. The above equation is
satisfied if:

(30) −P (z)F (z) +Q(z)F ′(z) +Q′(z)F (z) = 0 ,

which is the first-order differential equation mentioned by Schrödinger in the text,
and

(31)

∫
L

dz
d

dz
[ezrQ(z)F (z)] = 0 ,

which will turn out to be condition (13). Let us write Q(z) as:

(32) Q(z) = z2 + δ0z + ε0 = (z − c1)(z − c2) ,

where c1 and c2 are, as explained in the text by Schrödinger, the roots of Q(z) and
therefore are related to δ0 and ε0 as follows:

(33) c1 + c2 = −δ0 , c1c2 = ε0 .
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Equation (30) can now indeed be solved by quadrature since it can be cast as
follows:

(34)
F ′

F
=
P −Q′

Q
=
z(δ1 − 2) + ε1 + c1 + c2

(z − c1)(z − c2)
,

and upon integration, a part an unimportant integration constant, we get:

(35) F = (z − c1)α1−1(z − c2)α2−1 ,

with α1 and α2 given by equation (14′). With this F we reproduce equations (12)
and (13).
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